Hall Ticket Number: Code No.: 14467 N/O

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

B.E. (E.C.E.) IV-Semester Main & Backlog Examinations, July-2023 **Electromagnetic Field Theory**

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Q. No.	Stem of the question	N.F			
1.		M	L	СО	PO/PSC
	State the Coulomb's law of force between two point charges separated by the distance R	2	1	1	1
2.	Express curl of a vector A in Cylindrical coordinate system		2	1	1
3.	Draw the electric flux pattern due to (i) single point charge and (ii) dipole		1	2	1
4.	Define the terms linear, homogeneous and isotropic with respect to dielectric medium		2	2	1
5.	Find the magnetic field intensity due to infinite length current carrying conductor at a distance 0.5 m with current $I = 2A$ along z axis.		1	3	2
6.	Find the magnetic field Intensity \vec{H} if Plane y=0 carries sheet current with density of \vec{K} =2.5a _z mA/m.	2	2	3	2
7.	Calculate skin depth of a material for which $\sigma=5$ S/m and μ $_r$ =2 at a frequency 1.25 GHz	2	1	4	2/2
8.	In free space $\vec{E}=16e^{-x/20}\sin{(2X10^8t-2x)a_z}$ V/m. Find the direction of propagation, wavelength, velocity of propagation and intrinsic impedance	2	2	4	4/2
9.	Draw the equivalent circuit of transmission line with proper labeling of parameters	2	2	5	1/2
10.	A parallel polarized wave is incident from air onto distilled water with $\varepsilon_r = 81$. Find the Brewster's angle θ_B ?	2	2	5	2/2
	Part-B $(5 \times 8 = 40 \text{ Marks})$				
1. a)	Derive the expression for \vec{E} due to the infinite line of charge placed along z axis.	4	2	1	1
b)	Find the electric field intensity \vec{E} due to infinite length coaxial cable at any point	4	3	1	2
	 (i) Inside the inner cylinder (ii) Between the inner and outer cylinders (iii) Out side the outer cylinder 				

Code No.: 14467 N/O

:: 2 ::

12. a)	A scalar potential in the certain region is given by $V = 5x + 4y2 + 2z3$ volts. Find Electric field intensity \vec{E} at $(2,3,5)$.	4	3	2	2
b)	Find the work done to move a point charge of 5 mC from point P(2,1,3) to point A(4,-2,5) in the electric field $\vec{E} = 4\widehat{a_x} + 3x^2\widehat{a_y} + 2yz^2\widehat{a_z}$	4	3	2	2
13. a)	Derive the magnetic field intensity due to a infinite current sheet.	4	2	3	4
b)	Evaluate the inductance of a solenoid with length "l" and number of turns "N"	4	3	3	2
14. a)	Formulate Maxwell's differential equations from the corresponding integral equations using Gauss Divergence theorem and Stokes theorem	4	2	4	4/2
b)	What is the inconsistency of Ampere's circuital law and how it is rectified and derive the modified Ampere's Circuital law	4	3	4	2/2
15. a)	State Poynting vector theorem and Prove the Poynting vector theorem for electromagnetic wave	4	2	5	4/2
b)	Formulate the expression for reflection coefficient of electric field when the wave incident with normal incidence θ_i =0°.	4	4	5	4/2
16. a)	Define Conservative property and show that electrostatic field is conservative	4	4	1	2
b)	What are the applications of boundary conditions? Derive the boundary conditions for static electric fields between dielectric and dielectric media interface	4	4	2	1,2
17.	Answer any two of the following:				
a)	What are the different ways of finding the magnetic field intensity and express magnetic field intensity \widehat{H} and magnetic vector potential \widehat{A} . in terms of current elements $I\widehat{dl}$,	4	1	3	2
b	What are the advantages of wave equations? Derive wave equation for electric filed starting from Faraday's law of electromagnetic induction in differential form	4	1	4	2/2
c)	When the input impedance of a transmission line is given by	4	3	5	4/2
9	$Z_{in}(l) = Z_0 \left[\frac{Z_L + jZ_0 \tan \beta l}{Z_0 + jZ_L \tan \beta l} \right]$				
	Calculate input impedance of with (i) short load, (ii) Matched load, (iii) open load	-		Outcome	

M: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

i)	Blooms Taxonomy Level – 1	20%
ii)	Blooms Taxonomy Level – 2	35%
iii)	Blooms Taxonomy Level – 3 & 4	45%
